УДК 624.014

ОПТИМИЗАЦИЯ РАЗМЕРА КОНЕЧНЫХ ЭЛЕМЕНТОВ В МОДЕЛИРОВАНИИ ВЕРТИКАЛЬНЫХ ЦИЛИНДРИЧЕСКИХ РЕЗЕРВУАРОВ С МЕМБРАННЫМ ПОКРЫТИЕМ В ПК ЛИРА-САПР

Д.И. Мех, И.В. Роменский, А.Н. Миронов

Донбасская национальная академия строительства и архитектуры, г. Донецк (Российская Федерация)

Аннотация. В статье проведены исследования оптимального размера конечных элементов при моделировании вертикальных цилиндрических резервуаров с мембранным покрытием в ПК ЛИРА-САПР. Цель исследования состоит в определении оптимального размера сетки разбиения конечных элементов для различных частей резервуара. Для этого решены задачи построения расчетных моделей пяти резервуаров с различными размерами сетки разбиения и сравниваются напряжения в элементах резервуара. В статье используется типовой проект резервуара 704-1-170.84 «Резервуар стальной вертикальный цилиндрический для нефти и нефтепродуктов ёмкостью 10 000 м³» и характеристики мембранного покрытия, а нагрузки, действующие на резервуар, собраны с учетом нормативных документов. Результаты расчетов представлены в таблицах и на рисунках, что позволяет сделать вывод о том, что минимальная сетка разбиения конечных элементов стенки резервуара и мембраны должна быть не более 0,75х0,75м и 1х1м соответственно. Полученные результаты имеют важное значение для обеспечения точности при исследовании напряженно-деформированного состояния (НДС) резервуаров и проектирования резервуаров.

Ключевые слова: резервуар, мембранное покрытие, ПК ЛИРА-САПР, напряженно-деформированное состояние, метод конечных элементов.

Ссылка для цитирования: Мех Д.И., Роменский И.В., Миронов А.Н. Оптимизация размера конечных элементов в моделировании вертикальных цилиндрических резервуаров с мембранным покрытием в ПК ЛИРА-САПР // Инженерные исследования. 2024. №2(17). С. 13-21. EDN: KJGQWM

OPTIMIZATION OF THE SIZE OF FINITE ELEMENTS IN MODELING VERTICAL CYLINDRICAL TANKS WITH MEMBRANE COATING IN LIRA-SAPR SOFTWARE

D.I. Mekh, I.V. Romensky, A.N. Mironov

Donbass national academy of civil engineering and architecture, Donetsk (Russian Federation)

Abstract. The article studies the optimal size of finite elements when modeling vertical cylindrical tanks with a membrane coating in the LIRA-SAPR software. The purpose of the study is to determine the optimal finite element mesh size for different parts of the tank. For this purpose, the problems of constructing computational models of five reservoirs with different mesh sizes were solved and the stresses in the reservoir elements were compared. The article uses a standard tank design 704-1-170.84 "Vertical cylindrical steel tank for oil and petroleum products with a capacity of 10,000 m³" and the characteristics of the membrane coating, and the loads acting on the tank are collected taking into account regulatory documents. The calculation results are presented in tables and figures, which allows us to conclude that the minimum mesh for dividing the finite elements of the tank wall and membrane should be no more than 0.75x0.75m and 1x1m, respectively. The results obtained are important for ensuring accuracy in the study of the stress-strain state (SSS) of reservoirs and the design of reservoirs.

Keywords: reservoir, membrane coating, LIRA-SAPR software, stress-strain state, finite element method.

For citation: Mekh D.I., Romensky I.V., Mironov A.N. Optimization of the size of finite elements in modeling vertical cylindrical tanks with membrane coating in LIRA-SAPR software // Inzhenernyye issledovaniya [Engineering Research]. 2024. No.2(17). Pp. 13-21. EDN: KJGQWM

введение

Сегодня инженеры в проектировании все больше полагаются на использование различных программных комплексов, в частности ЛИРА-САПР, для более точного и эффективного моделирования инженерных систем. Тем не менее при создании численных моделей вопрос оптимального размера конечных элементов для обеспечения точности инженерных расчетов остается одним из ключевых.

Резервуары, как особо ответственные сооружения, подвергаются разнообразным воздействиям, поэтому точность результатов расчетов имеет определяющее значение для исследования их НДС.

Цель данного исследования состоит в определении оптимального размера сетки разбиения конечных элементов в ПК ЛИРА-САПР для разных частей резервуара.

Для этого необходимо выполнить следующие задачи:

1. Построить расчетные моделей пяти резервуаров с сеткой разбиения «0,5х0,5м», «0,75х0,75м», «1х1м», «1,5х1,5м», «2х2м».

2. Сравнить напряжения в элементах резервуара, невязка которых не должна превышать 10%.

ОПИСАНИЕ РЕЗЕВУАРА

Для создания расчетной модели принимаем типовой проект 704-1-170.84 «Резервуар стальной вертикальный цилиндрический для нефти и нефтепродуктов ёмкостью 10 000 м³» с характеристиками, описанными в табл. 1.

Таблица 1. Характеристики резервуара **Table 1.** Reservoir characteristics

N⁰	Параметр	Ед. измерения	Значение
1	Объем	M ³	10000
2	Внутренний диаметр стенки	ММ	28500
3	Высота стенки	ММ	17880
4	Количество поясов	шт.	12
5	Высота пояса	ММ	1490
6	Толщина I пояса	ММ	12
7	Толщина II-VI пояса	ММ	10
8	Толщина VII-IX пояса	ММ	9
9	Толщина X-XII пояса	ММ	8
10	Диаметр днища с окрайками	ММ	28620
11	Толщина днища	ММ	5
12	Толщина окраек	ММ	9

На рис. 1 показан чертеж фасада резервуара.

Fig. 1. Tank facade

Характеристики мембранного покрытия, представленные в табл. 2, вычислены по методике, описанной в работах [1-3].

Таблица 2. Характеристики мембранного покрытия **Table 2.** Characteristics of membrane coating

N₂	Параметр	Ед. измерения	Значение	
1	Толщина мембраны	MM	2	
2	Высота стенки двутавра опорного контура	MM	860	
3	Толщина стенки двутавра опорного контура	MM	8	
4	Ширина полки двутавра опорного контура	MM	460	
5	Толщина полки двутавра опорного контура	MM	18	
6	Расчетный прогиб покрытия	MM	880	
7	Номер двутавра центрального кольца		20Б1	
8	Толщина «постели»	MM	4	
9	Ширина «постели»	MM	300	
10	Толщина мембраны центрального кольца	MM	2	
11	Номер швеллера кольцевых ребер жесткости		14П	
12	Диаметр мембранного покрытия	MM	28500	
13	Диаметр центрального кольца	MM	2800	
14	Шаг элементов «постели» у опорного контура	MM	5970	
15	Шаг элементов «постели» у центрального кольца	MM	590	

На рис. 2 показана пространственная модель мембранного покрытия резервуара.

Рис. 2. Пространственная модель мембранного покрытия: а – вид сверху; b – вид снизу **Fig. 2.** Spatial model of membrane coating: a – top view; b – bottom view

Нагрузки, действующие на резервуар, были собраны согласно нормативным документам СП 20.13330.2016 «Нагрузки и воздействия» и СТО-СА-03-002-2009 «Правила проектирования, изготовления и монтажа вертикальных цилиндрических стальных резервуаров для нефти и нефтепродуктов».

Собственный вес и технологическая нагрузка приняты с учетом коэффициентов надежности.

Снеговая нагрузка собрана для VIII снегового района.

Ветровая нагрузка, действующая на резервуар, принимается по упрощенной схеме для VII ветрового района по формуле (1).

$$W = 0.5 \cdot W_0 \cdot \gamma_f \cdot c \cdot k(z_e) \tag{1}$$

где:

W – эквивалентное значение ветрового давления (кПа);

W₀ – нормативное значение ветрового давления (кПа);

γ_f – коэффициент надежности по нагрузке;

с – аэродинамический коэффициент;

k(z_e) – коэффициент, учитывающий изменение ветрового давления для высоты z_e.

Гидростатическая нагрузка принята 1000 кг/м³ (вода).

Аварийное избыточное давление 2,3 кПа и аварийный вакуум 0,4 кПа приняты согласно основным расчетным положениям, описанным в типовом проекте 704-1-170.84 «Резервуар стальной вертикальный цилиндрический для нефти и нефтепродуктов ёмкостью 10 000 м³».

Коэффициент постели с_{1z} днища резервуара принят 5 МН/м³.

ОПИСАНИЕ РАСЧЕТНОЙ СХЕМЫ

Расчетная схема резервуара и мембраны создана с учетом рекомендаций, которые даны в работах [4-9]. В табл. 3 представлены данные, описывающие элементы резервуара и мембранного покрытия во всех расчетных схемах.

Таблица 3. Количество конечных элементов Table 3. Number of finite elements

		Пластины					Стержни				
№	Наименование	0,5x0,5m	0,75х0,75м	1x1M	1,5x1,5M	2x2m	0,5x0,5M	0,75x0,75M	1x1m	1,5x1,5M	2x2m
1	I пояс	540	240	90	60	45					
2	II-VI пояс	2700	1200	450	300	225	_			_	
3	VII-IX пояс	1620	720	270	180	135	_			_	
4	X-XII пояс	1620	720	270	180	135	_			_	
5	Днище	2188	960	570	249	155	_			_	
6	Окрайки днища	720	360	270	120	90	_			_	
7	Мембрана	4680	2160	1170	540	315	_			_	
8	Мембрана центрального кольца	728	660	662	329	177	_			_	
9	Опорный контур						180	120	90	60	45
10	Центральное кольцо						180	120	90	60	45
11	Кольцевые ребра жесткости						180	120	90	60	45
12	Постель	_			_		390	270	195	135	105

На рис. 3-7 показаны расчетные модели резервуаров с разной сеткой разбиения конечных элементов.

Рис. 4. Расчетная модель (0,75х0,75м): а – резервуар; b – покрытие Fig. 4. Calculation model (0.75х0.75m): а – reservoir; b – coating

Fig. 7. Calculation model (2x2m): a – reservoir; b – coating

РЕЗУЛЬТАТЫ

Расчет производился в ПК ЛИРА-САПР 2016 при упругой работе материала без учета геометрической нелинейности. Результаты расчетов в виде меридиональных (σ_x), кольцевых (σ_y) и приведенных (σ_{IV}) напряжений (рассчитанных по 4-ой энергетической теории прочности) в пластинах стенки и кровли представлены в табл. 4. Также были получены продольные растягивающие усилия N в

опорном контуре (изгибающие моменты не учитывались в следствие их малости). В кольцевых ребрах жесткости и постели были получены продольные силы N, при этом изгибающие моменты не учитывались. Зависимость величины приведенных напряжений пластин и продольных усилий стержней от размеров сетки разбиения конечных элементов представлена на рис. 8-10.

Таблица 4. Усилия и напряжения в элементах **Table 4.** Forces and tensions in elements

Nº	Наименование	Ед. измерения		Пластины					
				0,5х0,5м	0,75х0,75м	1х1м	1,5х1,5м	2х2м	
		σx	М∏а	244	255	162	156	150	
1	I пояс	σy	МΠа	-5,52	-5,5	-5,44	-5,45	-5,44	
		σ _{IV}	МПа	245	256	163	157	151	
2	II пояс	σ _x	МПа	249	244	267	263	259	
		$\sigma_{\rm v}$	МПа	-6,34	-6,31	-6,25	-6,28	-6,25	
		σ_{IV}	МΠа	250	245	268	264	260	
3	III пояс	σ_x	МΠа	233	231	219	220	221	
		σ_y	МПа	-6,06	-6,05	-5,98	-5,99	-5,98	
		σ_{IV}	МПа	234	232	220	221	222	
	IV пояс	σ_x	МΠа	210	208	204	203	202	
4		σ_y	МПа	-5,81	-5,77	-5,71	-5,71	-5,71	
		σ_{IV}	МПа	210	208	204	204	203	
		σ_x	МПа	186	184	177	177	177	
5	V пояс	σ_y	МПа	-5,54	-5,51	-5,43	-5,43	-5,42	
		σ_{IV}	МПа	187	185	178	178	178	
		σ_x	МПа	163	160	158	158	158	
6	VI пояс	$\sigma_{\rm v}$	МПа	-5,27	-5,23	-5,16	-5,15	-5,15	
		σ_{IV}	МПа	163	161	159	159	159	
	VII пояс	σ_x	МΠа	151	149	143	143	142	
7		σ_y	МПа	-5,55	-5,51	-5,43	-5,44	-5,44	
		σ_{IV}	МПа	151	150	143	143	143	
	VIII пояс	σ_x	МПа	129	127	121	121	120	
8		σ_y	МПа	-5,25	-5,21	-5,16	-5,17	-5,16	
		σ_{IV}	МΠа	129	127	121	121	121	
	IX пояс	σ_x	МПа	103	101	95,9	96	96,1	
9		σ_y	МПа	-4,96	-4,94	-4,88	-4,9	-4,89	
		σ_{IV}	МПа	103	101	96,1	96,2	96,3	
	Х пояс	σ_x	М∏а	84,2	82	75,7	75,3	74,9	
10		σ_y	МПа	-5,27	-5,25	-5,2	-5,23	-5,21	
		σ_{IV}	МПа	84,3	82,1	75,7	75,3	74,9	
	XI пояс	σ_{x}	М∏а	57,5	55,2	50,4	49,1	47,5	
11		$\sigma_{\rm v}$	МПа	-4,98	-4,95	-4,92	-4,96	-4,94	
		σ_{IV}	МΠа	57,5	55,1	51,8	50,5	48,9	
12	XII пояс	σ_{x}	МΠа	-96,9	-81,9	-69	-69,6	-69,9	
		$\sigma_{\rm v}$	МПа	-4,72	-4,7	-4,62	-4,68	-4,66	
		σ_{IV}	МΠа	94,9	79,8	67	67,5	67,9	
13	Мембрана	σ_{x}	МПа	123	124	124	124	127	
		$\sigma_{\rm y}$	МПа	161	171	174	183	184	
		σ_{IV}	МПа	144	151	154	162	163	
14	Опорный контур	N	кН	1031	1010	944	913	879	
15	Центральное кольцо	N	кН	252	245	239	203	141	
16	Кольцевые ребра жесткости	Ν	кН	67,7	66,2	65,5	64	59,8	
17	Постель	Ν	κН	143	133	132,5	112,6	114	

Рис. 8. Зависимость приведенных напряжений от размеров сетки разбиения конечных элементов **Fig. 8.** Dependence of reduced stresses on the dimensions of the mesh partitioning of finite elements

Рис. 9. Зависимость приведенных напряжений от размеров сетки разбиения конечных элементов **Fig. 9.** Dependence of reduced stresses on the dimensions of the mesh partitioning of finite elements

Рис. 10. Зависимость продольных усилий от размеров сетки разбиения конечных элементов **Fig. 10.** Dependence of longitudinal forces on the dimensions of the mesh partitioning of finite elements

ЗАКЛЮЧЕНИЕ

Исходя из результатов расчетов, представленных в табл. 4 и рис. 8-10, можно сделать выводы относительно оптимальных размеров сетки разбиения конечных элементов для стенки резервуара и мембраны. Рекомендуется принять минимальный размер сетки, не превышающий 0,75х0,75м для стенки резервуара и 1х1м для провисающего мембранного покрытия. При этом для резервуаров с отличными объемами рекомендуется провести дополнительное исследование с целью оптимизации размеров сетки разбиения.

В местах, где ожидаются значительные деформации или напряжения, настоятельно рекомендуется использовать более мелкую сетку разбиения. В то же время, в областях с незначительными изменениями деформаций или напряжений, а также в участках, не имеющих критического значения для анализа, можно применять более крупную сетку. Однако следует учитывать, что при существенном различии размеров соседних элементов вблизи точек сосредоточенных напряжений наблюдается ухудшение точности результатов расчетов.

Также следует сказать, что четырехугольные конечные элементы обычно обладают более высокой точностью отображения результатов по сравнению с треугольными. Это связано с их способностью более эффективно моделировать различные формы конструкции и ее геометрические особенности, чего нельзя сказать о треугольных элементах, которые, как правило, вызывают искажения при моделировании сложных форм. Следовательно, использование четырехугольных конечных элементов может более точно отразить реальное поведение структуры или материала в процессе анализа.

СПИСОК ЛИТЕРАТУРЫ

1. Трофимов В.И., Еремеев П.Г. Мембранные конструкции зданий и сооружений: Справ. пособие: В 2 ч. - М.: Стройиздат, 1990. 447 с.

2. Трофимов В.И., Микулин В.Б., Прицкер А.Я., Реусов В.А., Семенов В.Т. Мембранные конструкции зданий и сооружений. Киев: Будивельник, 1986. 177 с.

3. Деменев М.Г. Разработка конструкций покрытий с применением мембранных панелей: дис. канд. техн. наук: М., 1990. 234 с.

4. Бате К., Вилсон Е. Численные методы анализа и метод конечных элементов / Пер. с англ. А. С. Алексеева и др.; Под ред. А. Ф. Смирнова. – М.: Стройиздат, 1982. 448 с.

5. Городецкий А.С., Евзеров И.Д. Компьютерные модели конструкций. - Киев: Издательство «Факт», 2005. 344 с.

6. Шимановский А.О. Применение метода конечных элементов в решении задач прикладной механики: учеб. - метод. Пособие для студентов технических специальностей /, А.О. Шимановский, А.В. Путято; М-во образования Респ. Беларусь, Белорус. гос. ун-т трансп. – Гомель: БелГУТ, 2008. 61с.

7. Перельмутер А.В. Беседы о строительной механике. Научное издание. - М.: Издательство SCAD Soft, издательство ассоциации строительных вузов, 2014. 250 с.

8. Перельмутер А.В., Сливкер В.И. Расчетные модели сооружений и возможность их анализа. - 4-е изд. - М.: Издательство SCAD Soft, 2011. 736 с.

9. Фарфель М.И. Численные исследования работы прямоугольных мембранных панелей // Строительная механика и расчет сооружений. 2008. №4. С. 53-62.

ОБ АВТОРАХ

Дмитрий Игоревич Мех – студент магистратуры. Донбасская национальная академия строительства и архитектуры (ДонНАСА). 286123, Россия, г. Санкт-Петербург, ДНР, г. Макеевка, ул. Державина, д. 2. E-mail: meh.d.i-pgs-72b@donnasa.ru

Игорь Викторович Роменский – доцент кафедры «Металлические конструкции». Донбасская национальная академия строительства и архитектуры (ДонНАСА). 286123, Россия, г. Санкт-Петербург, ДНР, г. Макеевка, ул. Державина, д. 2. E-mail: i.v.romenskii@donnasa.ru

Андрей Николаевич Миронов – доцент кафедры «Металлические конструкции». Донбасская национальная академия строительства и архитектуры (ДонНАСА). 286123, Россия, г. Санкт-Петербург, ДНР, г. Макеевка, ул. Державина, д. 2. E-mail: a.n.myronov@donnasa.ru

ABOUT THE AUTHORS

Dmitriy I. Mekh – master's student. Donbass National Academy of Civil Engineering and Architecture (DonNACEA). 286123, Russia, DPR, Makeevka, Derzhavina st., 2. E-mail: meh.d.i-pgs-72b@donnasa.ru

Igor V. Romensky – Associate Professor of the Department of Metal Structures. Donbass National Academy of Civil Engineering and Architecture (DonNACEA). 286123, Russia, DPR, Makeevka, Derzhavina st., 2. E-mail: i.v.romenskii@donnasa.ru

Andrey N. Mironov – Associate Professor of the Department of Metal Structures. Donbass National Academy of Civil Engineering and Architecture (DonNACEA). 286123, Russia, DPR, Makeevka, Derzhavina st., 2. E-mail: a.n.myronov@donnasa.ru